Archive | policy and science RSS for this section

Any Adults in the Room?

Many of those who find President Trump’s instincts on foreign policy misguided frequently state that they are relieved that there are “adults in the room” that prevent rash military action by the President. At times, Congress has even stepped in to override the President’s dismissal of intelligence findings from the CIA or FBI. Those relieved “there are adults in the room” point to episodes described in various books on the administration where the President demanded action and others either dissuaded him or simply ignored his wishes; the most dramatic (and hotly debated) version of this was in an anonymous New York Times op-ed earlier this year. Whether such actions are honorable or not continues to be debated, but that is not our topic today.

GG would like to know where the adults in the room are when it comes to science.  Frankly, the answer would seem to be, nowhere. This was underscored this past week by what followed President Trump’s dismissal of a major climate report that the administration tried to bury by releasing it weeks ahead of time on Black Friday.  Basically, nobody stood up and said, you misunderstand what this in.  No, instead we had the EPA misrepresent instructions given to the group assembling the report, we had claims that this was a way for climate scientists to get rich, we had claims that lots of scientists disagree with the report.  All of which is wrong.

What is closer to reality is the necessity of the Climate Scientists Legal Defense Fund, or the  Silencing Science tracker, which is a sobering list of efforts made to ignore, obfuscate, blockade, defund, demean, ridicule or prevent scientific research.  The intense harassment Michael Mann faced, the time lost by two Arizona climate researchers ordered to hand over nearly all their emails–this is the reality of many climate scientists.  There is no big money in doing this work. Most are utterly anonymous and so don’t even get some perk from being quoted in the newspaper. A life of fame and fortune it is not.

While there might be adults in the room to mitigate President Trump’s evident distrust of experts in foreign policy, they are notably absent when it comes to using information from the experts on scientific matters.  And in the long run, that might prove to be more harmful to both the nation and the world than any reckless military adventures.

Mistaking Desire for Solution

As many may have noticed, there has been a big recall of romaine lettuce in the U.S., and this has affected the local school district’s lunch menu.  But there was an interesting quote at the end of the local story about this:

She [Food Services Director Ann Cooper] said this most recent recall is a symptom of a much larger problem of a global and national food system.

“If it was summer, we could get everything locally,” she said. “It’s because we have a broken, un-localized food system that causes these huge problems. If we had a regional system, we wouldn’t have this problem.”

Probably true.  If we had a localized food system, the kids would be eating potatoes, because lettuce doesn’t grow outdoors in the snow so very well. Or there would be a lot of greenhouses with a lot of energy being expended to grow a crop that, well, just grows all by itself in other climates.

Of course if there was any contamination here, we wouldn’t know it until there was quite a bit of illness locally–and by then you’d have no other options for food as well as a pretty severe local outbreak. Sure, you’d be able to go back to the grower and bop them on the head right away, which is undoubtably a big plus, but there are a lot of other costs that would get in the way of replacing our current system.

The food system is broken, but not quite in how Director Cooper is saying. We can’t track back food to its source, and that is indeed hard to understand in this day and age. This means that most of the lettuce that was pitched was perfectly fine, and the disruptions to the marketplace are way out of balance. But it is not because food is transported across the country from places where it is (ahem) dirt cheap to grow to places where it is not. While there is a lot to like about locally sourced produce, cheap and abundant and year-round is not often what is on the table.

Its hard to remember sometimes that humanity moved from everyone collecting their own food to specialization, allowing most of us to do something other than farm.  And so farmers specializing in what they can grow more cheaply than others is no surprise either. Is that why people get sick and it takes weeks to figure out why? No. Let’s try to recognize the actual problem and solve it, not impose our personal desires on top.

Green Trees, Ash Houses

Living in the west, sad stories of families losing their houses–or their lives–in wildfires is an all-too-common occurrence.  And as a geophysicist, GG is familiar with the old geoscience adage that earthquakes don’t kill people, but built structures failing in earthquakes kill people. It would seem we should adjust the second adage for the first situation: wildfires don’t kill people; flaming buildings kill people.

Have you noticed how often the pictures of destroyed houses includes green trees nearby? How often the description of the burned down house includes the oddly unburned things nearby? Although there are certainly fires so intense they take everything in their path, all too often it seems like houses burn when little else does. And this applies even to the devastation in Paradise California this week. The Los Angeles Times has a piece noting those still-standing trees and finds that the devastation in Paradise was because the fire became an urban fire. Houses were igniting other houses.

Basically the issue is that western houses catch burning embers with things like debris-filled gutters, exposed eaves and ventilation grills, and wooden porches. Once lit, houses tend to go up all at once. This is not new news–anybody with a house in the forest hears about it from their insurance and local fire officials. Yet new houses continue to be built with the same weaknesses, even in fire-prone areas. (At least most areas ban wood-shake roofs). Clearly more thought should be given to eliminating the ways houses catch burning embers.

Does this mean we’re off the hook on forest health? Well, probably not, though exactly what that means looks to be up for grabs more than ever. What seems certainly true is that frequent, low-intensity fires reduce the risk of intense damaging fires: the experiences in both Yosemite and Sequoia National Parks is that major fires lie down (lay down?) when they hit areas previously burned in a controlled manner.

But controlled burning isn’t a great option within the rural subdivisions now present in many forests. Thus many advocate for other kinds of treatment, ranging from wholesale clearcutting to selective logging to mechanical thinning of understory (to…raking???). One study recently highlighted in a CNN op-ed concluded rather strongly that more heavily managed forests are forests that burn more intensely–the opposite of what is usually claimed.  And GG can attest to how mundane it can be to encounter a natural wildfire in the unmanaged backcountry, having hiked through or right next to such fires on at least three occasions. But there are confounding factors in play, some of which are noted in the study. Certainly one is ignition: wilderness areas usually see fires starting from lightning strikes.  Such fires occur under conditions less apt to drive monster fires: the forest has often been wetted, and long periods of strong, dry winds are less likely. In contrast, managed forests are in more heavily used areas where neglected campfires, power lines, driving over dry grass, and sparks from machinery or gunfire are capable of starting a fire when strong, dry winds are present.

[As an aside, the above is all in reference to forests; Southern California chaparral is nearly immune to controlled burning, and unlike the forests, any such burning would leave the ground bare and hydrophobic. Chaparral is a whole different ballgame.]

What remains disturbing to GG in the forestry studies he’s perused is that the assumption remains that “pre-settlement” (apparently the currently favored term for c. 1840s western U.S.) is equal to “natural”. In some places, this will prove true, but in the Sierra foothills it is almost certainly a false equivalence. Pretending that Native American management was “natural” is likely to lead to poor decision making.  Better if land mangers simply sought to restore pre-settlement fire frequency and intensity rather than assuming it was natural. The reality is that many of the places most at risk in the Sierra foothills were occupied by people who had many generations of experience in burning the landscape. We might just want to recognize that as, in some instances, their management goals might not match ours, but when they do, odds are pretty good that their management schemes would be a good place to start.

De-Paneled

One wonders whether there will be payback down the road for the dismantling of the scientific advisory system in the federal government.  This game can be played both ways, after all.  A liberal administration could decide to punish industries with expensive, unrealistic and ineffective restrictions by avoiding scientific review under the guise of reducing pollution.

But that’s for another day (or an alternate universe).  More recently we have the former employee of a major coal lobbyist now disbanding the science panels reviewing particulate pollution limits. Particulate pollution is, of course, a rather prominent part of pollution from burning coal. And particulate pollution is increasingly seen to have an important impact on human health. So who will oversee this aspect of pollution science now? An oversight panel that, as one member of the disbanded science advisory panel told Greenwire, consolidates input “to a small, and in some cases unqualified, group of individuals, and ultimately opens EPA up to the charge that it is politics, not science, that is driving this new policy.”

Um, you think? This from folks involved in a failed lawsuit to dismantle the existing regulations? Naaah….

Again, science advisory panels tell administrators what the state of the science is. That opponents choose to oppose this scientific input not by refuting the science but by silencing the scientists is an extraordinarily shortsighted approach to government regulation. But then we’ve said that before…and before…and before. With the public’s focus on such trivia as the heritage of a member of Congress and the antics of a rapper in the Oval Office, you get the feeling that the bread and circuses approach to governing works well for those with an active but probably unpopular agenda.

Big Ones (Book Review)

Dr. Lucy Jones has spent her career standing in front of TV cameras and telling the people of Southern California what just happened in the last earthquake and what it meant.  [She is no relation to GG, if you wondered]. She developed over years of practice the ability to issue a soundbite acceptable to newscasters while still containing a scientifically defensible statement that provided useful information to a concerned public.  The number of working scientists with that background probably can be counted on one hand. (GG recalls seeing her do a live stand-up while one of her children wrestled with her leg–she gave no indication to the viewing audience what was going on just below the edge of their screen nor did it affect her delivery). She has recently been leveraging that experience to try to affect public policy through the creation of her own center on science and society.  An outgrowth of this is her book, The Big Ones: How Natural Disasters Have Shaped Us (and What We Can Do About Them).

It is worth reminding you of her scientific work, as many times the public face of an organization isn’t really an authority.  Lucy got deeply involved in the question of just what aftershocks really represent, which includes the question of what is going on when the aftershock is bigger than the original mainshock? This has been a tremendously practical approach to better quantifying short-term earthquake hazard, and she has worked to incorporate it in the messages to the public. This has led her to respond to reporters’ queries with simple yet fact-based responses, like when asked “what should people do after this last earthquake?” she might respond “Don’t leave town, but make sure your bookshelves are securely fastened to the wall and you aren’t sleeping under something heavy that could fall on you.”

It is this clear-spoken and practical approach that informs the book. She concerns herself with disasters of a magnitude large enough to threaten societies, such as the great Lisbon earthquake and tsunami, 1783-4 Laki eruption, the 1861-2 California flood, Katrina, and the Boxing Day and Tohoku tsunamis. (The one category she leaves out is drought). She argues that these events are of a totally different scale than more routine floods, earthquakes, and eruptions and that we are unprepared for just how destructive these things can be. In the end she argues (based on her own experiences with government) that making a more resilient society is the necessary goal and sets out guidelines for how to get there.

The disasters discussed range from the obscure (not many people know of Laki or the Lisbon earthquake these days) and the well known (Pompeii shows up with Katrina). In some instances she can shed light on events in ways most others could not (the Tangshen earthquake tragedy following the fortunate if lucky prediction of the Haicheng quake, the inability of California flood planners to accept the reality and possible recurrence of the 1862 floods, and the mistakes made in the L’Aquila earthquake prediction/unprediction and court case). The summaries of each are placed in a brief social context and provide a human dimension to the catastrophe (focusing on what happened to Pliny the Elder in the Pompeii eruption, for instance). Each has a bit of a moral about what this tells us about such mega disasters.

The book is a success, an easy read with good storylines for the reader and some twists and turns of interest even to seismologists, but there are a couple things that might have made its point more powerful. One is the absence of examples of societies that failed in the face of natural disasters; the closest example in the book is a small society wiped away in the Banda Aceh tsunami. Others seem not to be failures of societies so much as adaptations to some changes (did New Orleans go away? Did Sacramento rebuild? Did Rome fall from Pompeii? Would the Chinese Gang of Four really have ruled in the absence of the Tangshen earthquake?). Real failures might not be a lengthy list, which brings into question whether these Big Ones really are as challenging to societies as Dr. Jones would like us to believe.  Perhaps the collapse of Minoan civilization in the face of the Santorini eruption or the abandonment of Anasazi centers or Chaco culture due to drought might make the case that there is a real to a society’s continued survival. The devastation of Haiti or Puerto Rico might yet make the case, but Haiti’s quake isn’t mentioned and Puerto Rico is a brief aside.

The other loss is Jones’s dodge of the really Big One: climate change.  While Dr. Jones does a nice job of illustrating how the global reach of media and social media in particular is bringing home to all the terror and impact of big disasters, the presence of an ongoing global disaster seems to just not fit her narrative. Was this a decision to avoid alienating parts of her audience with a more politically charged topic, or just a disaster that was in a totally different class? Given concerns about storms described in the book becoming more common with a warmer climate, going beyond the resilient community recommendations in this case would have been welcome.  After all, we can’t lower the intensity of an earthquake, but we can undercut the most extreme storms, making communities more resilient on both ends of the spectrum.

Those are minor objections, though. Dr. Jones discusses her time with the City of Los Angeles working to get a program in place to retrofit the most dangerous buildings in the city. Her perspective is an interesting one for scientists loathe to step into the fray, as she is neither encouraging taking over the role of making policy or simply pitching academic studies over the fence for policy makers to do with what they will. Whether others can follow in her footsteps is yet to be seen, but she has laid out a case that big disasters are in our future and we are far better off preparing to mitigate their effects than preparing to respond once the emergency is underway.

Unnatural Degrees of Disaster

A op-ed-ish piece at CNN takes the devastation of hurricane Michael and seeks it to be labelled something other than a ‘natural disaster’. The main argument is that human emissions have led to warmer ocean waters, a warmer atmosphere and higher sea level, all of which allow for stronger and more impactful hurricanes. This is not news in the climate community, which has been striving the past few years to be able to say something about the effect of global warming on major storms, heat waves and droughts. But, of course, this is not the only way that humanity makes disasters worse.

A seismological aphorism is “earthquakes don’t kill people, buildings kill people.” Although an approximation (tsunamis are pretty capable of dealing death, as are quake-triggered landslides and avalanches), this does highlight the other way that humanity makes nature even more powerful. As a result, geoscientists often walk around shaking their head and muttering under their breath “Why’d they do that?” Adobe buildings in earthquake prone areas. Beach houses on barrier islands. Developments at the base of landslide-prone mountainsides–or on active landslides themselves. Cities in floodplains. Insurance designed to force the reconstruction of things in the same hazardous places. Frankly, it is so bloody obvious that these are stupid things that you want to throw your hands up in the air and embrace the inevitable extinction of such an incompetent species.

Of course these are all things that make natural disasters worse for people, but they don’t actually make the actual trigger worse, right? Um, true, but we already do plenty more than just supercharge hurricanes. Injection of waste water into deep wells has produced quite the swarm of earthquakes in Oklahoma. Paving over wetlands made floods in Houston that much worse than they would have been without paving. Human-caused fires set the stage for catastrophic landslides and mudflows that might not have happened without the fires. Subdivision have been crushed and roads destroyed because bulldozers removed the toe of stable landslides that then failed. Excessive watering and water from septic systems is likely the cause of the Portuguese Bend landslide in Southern California as the old slip planes got lubricated and the soils above increased in weight.

In sum, we’ve been at this business of making our own “natural disasters” for some time. All we’ve done with global warming is to carry our local disaster mania on the road. Arguably we’ve reached the point where a truly natural disaster is a rarity.

Ratings Failure

So FiveThirtyEight has a story about how inadequate hurricane intensity numbers (Saffir-Simpson scale categories) are.  Basically the destructive potential of a hurricane is poorly linked to that number. But the funny thing in reading the piece is that you could substitute Richter magnitude for Saffir-Simpson scale and make almost no other changes and the article would sound about right. Richter magnitudes (as popularly understood; the numbers reported for events are usually moment magnitudes these days) tell you almost nothing about the destructive potential of an earthquake.

Just as with hurricanes, where an earthquake strikes is critical in determining its damage. Magnitude 8 earthquakes 600 km under western Brazil are barely even noticed, while a M5.9 in northern Haiti kills over a dozen. The details can be amazingly important: a M6.3 earthquake in Christchurch devastated the city center and killed nearly 200 but the earlier M7.0 earthquake only a few miles away produced little damage and no fatalities.

Just as with hurricanes, the details of the earthquake will affect its ability to do damage. When an earthquake ruptures in one direction, damage will be greater in that direction than 180 degrees away. Another New Zealand quake, the 2016 M7.8 Kaikoura earthquake, ruptured from south to north, sparing areas closer to the epicenter but causing enough shaking in Wellington, across Cook Strait from the event, that several buildings had to be torn down. Toss in intrinsic variations in frequencies due to variations in stress drop and it is clear that a magnitude by itself doesn’t carry the whole story.

A popular pastime in southern California is guessing the magnitude of an earthquake solely from what was felt.  GG recalls a radio news program years ago when there was an earthquake near GG, who felt the quake before the radio broadcaster did. Callers speculated on where and how large this was: “I’m in San Bernardino and it was a slow rolling event so probably on the San Andreas to the north” “It was a sharp event that must have been a magnitude 6” and so on. (In fact, when you are close you tend to get a very sharp movement from the P-waves, but farther away it is the surface wave train that produces a more rolling movement).

The Richter magnitude is about forty years older than the Saffir-Simpson scale and as a result, seismologists have had that much more time to try and clarify all the things that go into earthquake damage.  Look into the earthquakes.usgs.gov page at a recent large event and you see far more than the magnitude. Their Pager page tries to estimate damage and deaths almost immediately after an event to help gauge the need for emergency assistance. Stories about the “Big One” that dominated California media for decades are being replaced with more nuanced stories highlighting the risk from faults through urban areas like the Malibu Coast/Hollywood Hills fault system or the Hayward Fault. And the interaction with the engineering community is far more sophisticated than 40 or 50 years ago, with power spectra and 50 year exceedence criteria being passed on from the seismological community.

And yet we get stories about the earthquake proof house that can withstand “an earthquake registering up to 9.0 on the Richter scale”.  Well, GG’s house survived a M9 earthquake–sure, it was across the globe, but the point is that distance and environment matter. Would these buildings make it if right on a 20m fault rupture? Doubtful. That surviving a M9 means nothing. Surviving some threshold of ground motion? That might be useful, but probably the public wouldn’t get a max acceleration of 2g as a useful number.

So good luck meteorologists. Your best hope might be in scaling total kinetic energy in a hurricane to a level from 1 to 5, where you could add decimals. Oh wait, they’ve done that. So why isn’t this on TV and the web now?